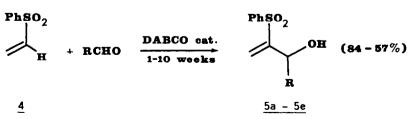

AN EASY SYNTHESIS OF THE 2-PHENYLSULFONYL-SUBSTITUTED ALLYLIC BROMIDES AND ACETATES AND THEIR REACTIVITY TOWARDS NUCLEOPHILES

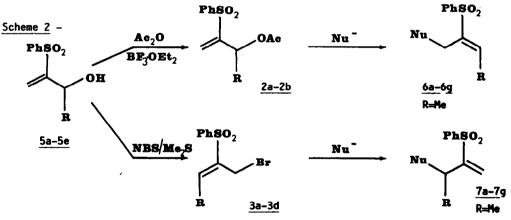
P. Auvray, P. Knochel and J.F. Normant


Laboratoire de Chimie des Organo-éléments, tour 44-45 Université P. & M. Curie, 4 place Jussieu F-75252 PARIS Cédex 05

Summary – The reaction of phenyl vinyl sulfone with various aldehydes in the presence of a catalytic amount of DABCO furnishes in good yields the corresponding 2-phenylsulfonyl-substituted alcohols 5a-5e which can be easily converted into their acetates 2a-2b or into their allylically rearranged bromides 3a-3d. These reagents, in turn, react with nucleophiles (ketone enolates and cuprates) with an allylic rearrangement (S_{2} ? mechanism) to give the functionalized unsaturated sulfones 6a-g and 7a-g. A palladium catalyzed reaction allows a stereo-controlled transformation of the sulfone 6b into the (Z,Z) skipped 1,4-diene 8.

Recently^{1,2} we have demonstrated that the easily available 3-bromo-2-tert-butyl-sulfonyl--1-propene <u>1</u> is a versatile multi-coupling reagent³. It reacts with various nucleophiles¹ (amines, thiolates, ketone and ester enolates, aryl-, alkenyl- alkynyl- and alkyl magnesium or lithium reagents) or with electrophiles² (aldehydes, ketones, nitriles, alkynes) in the presence of zinc, leading to functionalized unsaturated sulfones which can undergo further useful transformations^{4,5}. The synthetic potential of the reagent <u>1</u> would be further enhanced if substituents could be introduced at the positions 1 or 3 of the sulfone <u>1</u>.

We report now the synthesis of the reagents of type $\underline{2}$ or $\underline{3}$ and their reactivity⁶. We have found that a slow reaction occurs at 25° between the phenyl vinylsulfone $\underline{4}$ and various aldehydes in the presence of a catalytic amount of 1,4-diazabicyclo [2.2.2] octane (DABCO)^{7,8} to give the allylic alcohols <u>5a-5e</u> in good yields (see scheme 1 and table 1). Scheme 1 -

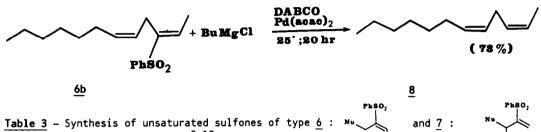


- Table 1 Synthesis of the allylic alcohols 5a-5e by the reaction of the phenyl vinylsulfone 4 with aldehydes in the presence of a catalytic amount of DABCO^{8,9}
- <u>Table 2</u> Synthesis of the 2-phenylsulfonyl allylic acetates and bromides (respectively <u>2a-2b</u> and <u>3a-3c</u>) from the alcohols <u>5a</u>, <u>5b</u> and <u>5d</u>⁹

RCH0	Product	Reaction time (weeks)	Yield %	Alcohol <u>5</u>	Method ^a	Product	Yield %
снзсно	<u>5a</u>	2	84	<u>5a</u>	Α	<u>2a</u>	94
PrCH0	<u>56</u>	4	75	5a	В	<u>3a</u>	85 ^b
BuCH0	<u>5c</u>	10	79	<u>5b</u>	Α	<u>2b</u>	95
iso-BuCHO	<u>5d</u>	11	81	<u>5b</u>	В	<u>3b</u>	87 ^b
PhCH0	<u>5e</u>	3	57	<u>5c</u>	В	<u>3c</u>	87 ^b
				<u>5d</u>	В	<u>3d</u>	82 ^b

a/ Method A : excess of Ac_20 , 1 drop of $BF_3.0Et_2$; 0°, 5min ; method B : 1.2 equiv. of MeSMe ; 1.1 equiv. of NBS, CH_2Cl_2 , 12hr at 25° ; b/ 100%-(E)-isomer.

The alcohols $\frac{5a-5c}{5a-5c}$ can be converted into the corresponding acetates $\frac{2a-2b}{2a-2b}$ (excess Ac_2^0 ; $BF_3.0Et_2$ cat; 5 min; 0°)¹⁰ or into the allylic rearranged isomerically pure (E)-bromides $\frac{3a-3d}{2a-3d}$ (1.2 equiv. of Me_2^5 ; 1.1 equiv. of N-bromosuccinimide (NBS) in $CH_2^{C1}c_2$, 12hr at 25°)¹¹ in high yields (see scheme 2 and table 2). These allylic acetates and bromides

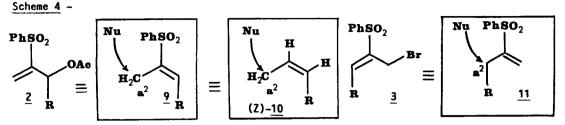

react regioselectively with carbon nucleophiles (ketone enolates or lithium aryl-, alkenyl- and alkyl- cyanocuprates¹²) to give the S_N^2 ' substitution products respectively of type <u>6</u> and <u>7</u> (see scheme 2 and table 3). The S_N^2 ' regioisomer is usually highly favored, even in the case of the bromide <u>3a</u> which bears a methyl substituent at the allylic position^{14,15}.

However in the case of the hindered lithium tert-butyl cyanocuprate, the formation of the S_N^2 product is also observed (see entry 10 of table 3). Also the (Z)-lithium octenyl cyanocuprate gives under our standard conditions¹³ a mixture of the S_N^2 ' and S_N^2 type products (50:50) but the addition of 2 equiv. of BF₃.0Et₂¹⁶ increases the S_N^2 '/ S_N^2 ratio

to (90:10) ; see entry 4 of table 3). The vinylic sulfones of type 6 are all isomerically pure (E isomer).

The unsaturated sulfones of type 6 and 7 can be readily transformed in sulfur free compounds. For example, treatment of the isomerically pure (2E, 5Z) dienyl-sulfone 6b with 1.8 equiv. of butylmagnesium chloride in THF in the presence of catalytic amounts of Pd(acac), and DABCO¹⁷ (25°, 20hr) allows a short synthesis of the (2Z,5Z) dodecadiene 8 in 73% yield and excellent isomeric purity (\geq 99%) ; see scheme 3.

Scheme 3 -



<u>Table 3</u> - Synthesis of unsaturated sulfones of type $\underline{6}$: Nusaccording to scheme $2^{9,13}$

Entry	Substrate	Nucleophile (Nu-Met)	Reactions temp.	conditions time(hr)	Product of type <u>6</u> or of type <u>7</u>	Yield %
		· · ·	•		··· _ ·· _	
1	<u>2a</u>	BuCuCNLi	-60° → -15°	1 ^a	<u>6a</u> :Nu=Bu-	82
2	<u>3a</u>	BuCuCNL i	-60°	0.5 ^a	<u>7a</u> : "	89
3	<u>2a</u>	(Z)-C ₆ H ₁₃ -CH=CH-CuCNLi	-15°	1.5	$\underline{6b}$:Nu=(Z)-C ₆ H ₁₃ -CH=CH-	78
4	<u>3a</u>	(Z)-C ₆ H ₁₃ -CH=CH-CuCNLi	-60° → -10°	2	<u>7b</u> : "	77 ^b
5	<u>2a</u>	PhCuCNLi	-60° + -45°		<u>6c</u> :Nu=Ph-	84
6	<u>3a</u>	PhCuCNLi	-60°	0.25	<u>7c:</u> "	96
7	<u>2a</u>	cyclo-C ₆ H ₁₁ -CuCNMgCl	-80° → -30°	2	<u>6d</u> :Nu=cyclo-C ₆ H ₁₁ -	95
8	<u>3a</u>	cyclo-C ₆ H ₁₁ -CuCNMgCl	-60 °	1	<u>7d</u> : "	94
9	<u>2a</u>	tert-BuCuCNLi	-60° → -45°	2.2	<u>6e</u> :Nu=tert-Bu	98
10	<u>3a</u>	tert-BuCuCNLi	-60 °	0.25	<u>7e</u> : "	35 [°]
11	<u>2a</u>		-60°≁ -10°	2.5	<u>6f</u> :Nu=PhCOCH ₂ -	80
12	3a	" OL I	-60°+ -10°	2.5	<u>7f: " 9</u>	56
13	<u>3a</u> <u>2a</u>	$X \sim $	-60°+ -25°		<u>6g</u> :Nu=	89
14	<u>3a</u>	···	-60°→ -20°	9 1.5	<u>7g</u> : "	78

a/ In this case ether is used as solvent ; b/ 10% of the SN2 product ($\frac{6b}{6b}$) are also isolated ; without BF₃.0Et₂ a 50:50 ratio of $\frac{6b}{6b}$ and $\frac{7b}{10}$ is obtained ; c/ $\frac{65\%}{5\%}$ of the SN2 product $\frac{6e}{6e}$ are also isolated.

The reagents of type $\frac{2}{2}$ and $\frac{3}{2}$ are thus synthetically equivalent to the regionsometric a^2 allylic synthons respectively 9, 10 and 11 ; see scheme 4.

Further aspects of the reactivity of the sulfones 2 and 3 are currently investigated in our laboratory (see the following publication).

Acknowledgements - We thank the C.N.R.S. for financial support (UA 473) and the Rhône-Poulenc Company for a grant to one of us (P.A.).

References and Notes :

- 1. P. Knochel and J.F. Normant, Tetrahedron Lett. 26, 425 (1985)
- 2. P. Auvray, P. Knochel and J.F. Normant, Tetrahedron Lett. 26, 2329 (1985)
- P. Knochel and D. Seebach, Tetrahedron Lett. 23, 3897 (1982)
 P. Auvray, P. Knochel and J.F. Normant, Tetrahedron Lett. 26, 4455 (1985)
- 5. P. Knochel and J.F. Normant, J. Organomet. Chem. (1986), in press
- 6. For the reactivity of bromides of type 3 towards electrophiles, see the following publication
- 7. a/ R. Oda, T. Kawabata and S. Tanimoto, Tetrahedron Lett. 1653 (1964) ; b/ K. Morita, Z. Suzuki and H. Hirose, Bull. Chem. Soc. Japan, 2815 (1968) ; c/ A.B. Baylis and M.E. Hillman, German Patent 2155113 (May 1972); C.A. <u>77</u>, 34174q (1972); d/ S.E. Drewes and N.D. Emslie, J. Chem. Soc. Perkin Trans. 1, 2079 (1982); e/ P. Perlmutter and C.C. Teo, Tetrahedron Lett. <u>25</u>, 5951 (1984); f/ H.M.R. Hoffmann and J. Rabe, J. Org. Chem. 50, 3849 (1985) g/ 0. Basavaiah and V.V.L. Gowriswari, Tetrahedron Lett. 27, 2031 (1986)
- 8. In a typical reaction, 3g (17.8mmol) of the phenyl vinylsulfone 4 and 0.2g (1.78mmol) of DABCO are dissolved in 5ml of acetaldehyde. After 2 weeks at 25°, the aldehyde excess is evaporated and a flash-chromatographic purification of the remaining oil gives 3.18g (84%) of the pure alcohol 5a
- 9. The given yields are those of flash chromatographically purified materials. All the spectroscopic datas (I.R., H-NMR and ¹³C-NMR) are compatible with the shown structure.
- 10. D. Seebach, G. Calderari and P. Knochel, Tetrahedron 41, 4861 (1985)
- 11. E.J. Corey, C.U. Kim and M. Takeda, Tetrahedron Lett. 4339 (1972) ; see also ref. 7f.
- 12. J.P. Gorlier, L. Hamon, J. Levisalles and J. Wagnon, J. Chem. Soc. Chem. Commun. 88 (1973) ; L. Hamon and J. Levisalles, J. Organomet. chem. 251, 133 (1983)
- 13. In a typical reaction, 8.5mmol of an ethereal solution of phenyllithium (1.16N) is slowly added at -80° to a stirred suspension of 376mg (4.2mmol) of CuCN in 20ml THF. After 30min. stirring at -30°, a solution of 508mg (2mmol) of the acetate 2a in 2ml of THF is slowly added at -80° to the cyanocuprate solution. The temperature is allowed to raise to -45° in 1 hour and the reaction mixture is quenched with 20ml of an NH_Clsolution. After the usual work-up and a flash-chromatographic purification, 455mg (83.6%) of the pure sulfone <u>6c</u> is obtained.
- 14. The corresponding 2-nitro substituted allylic pivalates show even higher $S_N 2^+$ selectivity : see ref. 10
- 15. High regio- and diastereo- selectivity has been observed in 5-membered analogous 2-phenylsulfonyl- substituted allylic compounds : R.E. Donaldson, J.C. Saddler, S. Byrn, A.T. Mc Kenzie and P.L. Fuchs, J. Org. Chem. 48, 2167 (1983) ; D.K. Hutchinson and P.L. Fuchs, J. Amer. Chem. Soc. 107, 6137 (1985); D.K. Hutchinson, S.A. Hardinger and P.L. Fuchs, Tetrahedron Lett. <u>27</u>, 1425 (1986) 16. K. Maruyama and Y. Yamamoto, J. Amer. Chem. Soc. <u>99</u>, 8068 (1977) 17. J.L. Favre and M. Julia, Tetrahedron Lett. <u>24</u>, 4311 (1983).

(Received in France 2 July 1986)